Gland segmentation in prostate histopathological images
نویسندگان
چکیده
منابع مشابه
Prostate segmentation and lesions classification in CT images using Mask R-CNN
Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...
متن کاملUnsupervised morphological segmentation of tissue compartments in histopathological images
Algorithmic segmentation of histologically relevant regions of tissues in digitized histopathological images is a critical step towards computer-assisted diagnosis and analysis. For example, automatic identification of epithelial and stromal tissues in images is important for spatial localisation and guidance in the analysis and characterisation of tumour micro-environment. Current segmentation...
متن کاملGland segmentation in colon histology images: The glas challenge contest
Colorectal adenocarcinoma originating in intestinal glandular structures is the most common form of colon cancer. In clinical practice, the morphology of intestinal glands, including architectural appearance and glandular formation, is used by pathologists to inform prognosis and plan the treatment of individual patients. However, achieving good inter-observer as well as intra-observer reproduc...
متن کاملPCG-Cut: Graph Driven Segmentation of the Prostate Central Gland
Prostate cancer is the most abundant cancer in men, with over 200,000 expected new cases and around 28,000 deaths in 2012 in the US alone. In this study, the segmentation results for the prostate central gland (PCG) in MR scans are presented. The aim of this research study is to apply a graph-based algorithm to automated segmentation (i.e. delineation) of organ limits for the prostate central g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Medical Imaging
سال: 2017
ISSN: 2329-4302
DOI: 10.1117/1.jmi.4.2.027501